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Abstract. An improved mean-field theory is proposed for traffic-flow models in two
dimensions, both in the absence and presence of faulty traffic lights. The present theory includes
the effects of blockage of cars due to cars moving in the same direction, while previous theories
included only the effects of cars moving in the perpendicular direction. In the absence of faulty
lights, the theory gives a much better estimate of the critical car density, above which the traffic
is in a jamming phase. In the presence of faulty lights, the theory captures all the essential
features in published simulation data. It gives the correct behaviour of the velocity in the dilute
limit of car density. The dependence of the critical car density on the fraction of faulty traffic
lights is studied.

Recently, there has been much interest in the study of traffic flow problems within the
context of cellular-automaton (CA) models. These models have the advantages of being
simple and easy to implement on computers, and can be readily generalized to study different
effects on the road. The idea is similar to the application ofCA models to other dynamical
problems such as fluid flow. In one dimension (1D), Negal and Schrekenberg [1] introduced
a stochastic discreteCA model to study the transition from laminar traffic flow to start–stop
waves as the car density increases. Effects of bottleneck regions, slower and takeover sites,
acceleration, exit and entrance sites, quenched disorderness, and separation-dependent car
velocities, etc on1D traffic flow have been studied [2–7]. Biham, Middleton and Levine [8]
(henceforth referred to asBML) introduced a simple two-dimensional (2D) CA model with
traffic lights and studied the average velocity of cars as a function of their density. In the
original BML model, cars moving from west to east on a lattice will attempt a move in the
first half of a time step, say, and cars heading from south to north will attempt a move in
the second half of the time step. It was found that the average velocity in the long time
limit vanishes when the concentration of cars is higher than a critical value. The basicBML

model has been modified to study the effects of two-level crossing (overpasses), accidents
on the road, slower sites, and faulty traffic lights [9–12].

The drop to vanishingly small velocity for car concentrations above a critical value
signifies a transition from a moving phase for low car densities to a jamming phase for high
car densities. Similar to dealing with phase transitions in equilibrium systems, mean-field
theories have been useful in providing basic understanding of phenomena in dynamical
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systems. Several versions of mean-field theory have been proposed [13, 14]. For the basic
BML model, Nagatani [13] has developed a mean-field treatment that takes into account the
blockage of cars in one direction by cars moving in the perpendicular direction. He has also
extended the method to anisotropic car distribution in which there are different densities for
northbound and eastbound cars, and to cases of crossing of two perpendicular lanes. The
treatments give qualitatively correct results when compared with simulation data. However,
the theories do not properly account for the blockage of cars by cars moving in thesame
direction—an effect intrinsically built into theCA models and this is the most important
factor in 1D models. This defect leads to an overestimate, among other parameters, of the
critical car density.

In this letter, we introduce an improved mean-field theory for theBML model, and for
BML model with faulty traffic lights. For theBML model, we found a value for the critical
car density much closer to the numerical result. For theBML model with faulty traffic
lights, the mean-field theory reproduces the features of the simulation result. The critical
car density drops frompc = 0.343 for theBML model monotonically topc = 0.166 to the
case of 100% faulty traffic lights. Both of these values are in reasonable agreement with
published simulation results [8].

In the basicBML model [8], cars are placed in anN × N -block square lattice, with
equal numbers of northbound and eastbound cars. Each block on the lattice can be in one
of the three states: (i) occupied by a northbound car, (ii) occupied by an eastbound car,
(iii) unoccupied. The updating rule is that northbound (eastbound) cars will only attempt
a move in the first (second) half of a time step so as to regulate the flow to prevent two
cars from moving into the same site simultaneously. Thus, the first and second halves of a
time step represent the function of traffic lights. When a car attempts a move, it will move
forward one step unless the site in front of it is blocked by another car. In that case, it will
not move, even if the blocking car leaves on the same time step.

As the car distribution is isotropic, the velocities, which are defined as the ratio of
number of steps that the cars moved to the total attempted moves in a time step, in the long
time limit are identical in both directions and will be denoted byv. It takes on a maximum
value of unity in the dilute limit of car density and vanishes in the jamming phase. Letp

be the total car density, i.e.p/2 of northbound cars andp/2 of eastbound cars. Consider
the velocity in the eastbound direction. This depends on two factors as an eastbound car
may be blocked by a northbound caror by another eastbound car. As northbound cars
spend on average a time 1/v on a site, they reduce the speed of eastbound cars from unity
by p/(2v). For eastbound cars, the extra amount of time that an eastbound car stays on a
site is given by 1/v − 1. This delay reduces the speed by an amount1

2p(1/v − 1). Hence,
a self-consistency equation for the speedv is

v = 1 − p

2v
− p

2

(
1

v
− 1

)
. (1)

The last term is the correction term taking the effects of blockage of cars moving in the
same direction into account. It was not included in previously proposed mean-field theories
[13]. Equation (1) is a quadratic equation forv and can be readily solved to give

v = 1

2
+ p

4
+ 1

2

√
1

4
(2 + p)2 − 4p (2)

for p < pc, where the critical car densitypc is determined by the density at which
equation (2) ceases to give a real solution and is given by

pc = 6 −
√

32 ≈ 0.343. (3)
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Mean-field theory without the correction term [13] gives a value ofpc = 1/2; while
simulation results given byBML [8] on 512× 512 lattices givepc ∼ 0.315. Figure 1 shows
the speedv as a function ofp within the present theory. For comparsion, simulation results
on 512×512 lattices given byBML [8] are sketched and the results of the mean-field theory
without the correction term are also included. We note that for simulations on lattices of
larger size, the critical car density is expected to shift to a smaller value. Our theory hence
gives a much better estimate of the critical car density than the previous theory.

Figure 1. The velocity as a function of car density within the present theory (full curve). For
comparsion, we sketched the results (long dashes) from [8] from simulations on 512× 512
lattices and included results of previous mean-field theory (short dashes) from [13].

The present approach can be readily extended to include the effects of faulty traffic
lights. Simulation data in the literature [12] show that faulty lights have two effects. At
low car densities, intentionally turning off the traffic lights in a city may improve traffic
flow in the sense that cars do not need to stop at lights. However, the critical car density
is reduced by faulty traffic lights. Hence, a concentration originally in the moving phase
within theBML model may become jammed with the introduction of faulty lights. We model
the effects of faulty traffic lights as follows [12]. Letc be the fraction of faulty traffic lights.
For an empty site with a faulty light, both northbound cars to the south and eastbound cars
to the west of the site may attempt to enter, regardless of whether it is the first or second
half of a time step. So, a northbound car to the south of a site with a faulty light will be able
to move forward, even if it is the second half of the time step, provided that no eastbound
car is trying to enter the site simultaneously. The same goes for an eastbound car to the
west of the site with a faulty light. In the case of two cars simultaneously attempting to
enter the site, one of them will be chosen randomly to enter the site, and the other car will
not move at that attempt. With the introduction of faulty lights, it becomes possible for a
car to move twice in one time step, resulting in a velocity larger than unity.

Consider the velocity in the eastbound direction. For those 1− c fraction of sites
with traffic lights, the effect is again given by equation (1). The presence of faulty
lights leads to an additional term proportional toc in the self-consistency equation of
the velocity. The maximum possible value ofv is now two obtained in the limit of
dilute car density andc = 1. For 0 < c < 1 and givenp, the effects of faulty lights
can be best understood by considering the reduction in speed from its maximum possible
value due to blockage by cars in either directions. The two halves of the time step are
treated as independent of each other. The probability that a northbound car occupying a
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Figure 2. The velocity as a function of car density for different fractions of faulty traffic lights
on the road within our mean field theory. The lines atp = 0.1, from bottom to top, correspond
to the fractionsc = 0, 0.1, 0.2, . . . , 1.0. The critical car density drops as the fraction of faulty
lights increases. The inset shows the dependence of the critical car density on the fraction of
faulty lights.

site with faulty light and blocking the eastbound car from moving is 2(p/2)(1/v) = p/v.
Similarly, the probability that another eastbound car occupying the site with a faulty light
and preventing an eastbound car from moving forward is 2(p/2)(1/v−1/2) = p(1/v−1/2).
Putting these considerations together, if an eastbound car wins in an attempt to move into
a site with faulty lights, its speed is reduced from its possible maximum value of two to
2(1−p/v−p(1/v−1/2)) = 1−2p/v+p/2. However, an eastbound car has a probability
(1−p/4) of getting into an empty site with faulty light due to the competition of northbound
car trying to get into the same site. Hence the inclusion of faulty traffic lights leads to a
modification of equation (1) of

v = (1 − c)
(

1 − p

v
+ p

2

)
+ 2c

(
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4

) (
1 − 2p

v
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2

)
(4)

which gives a quadratic equation forv

v2 −
(

1 + c + cp

2

) (
1 + p

2

)
v + (1 + 3c − cp)p = 0. (5)

Equation (5) can be solved forv for p < pc, whichpc determined by setting the discriminant
to zero. Thuspc satisfies the equation

c2p4
c − 4cp3

c + 4(1 + 13c − 2c2)p2
c − 16(3 + 11c)pc + 16(1 + c)2 = 0. (6)

For c = 0, equation (4) reduces to equation (1), and equation (6) gives the previous result
6 − √

32. Forc = 1, i.e. when all the traffic lights are turned off, equation (6) is a quartic
equation forpc and givespc ≈ 0.307. For this case,BML [8] reported a value ofpc ∼ 0.1
obtained from simulations on 512×512 lattices. Figure 2 shows the velocity as a functionp

for different fractions of faulty traffic lights. The features are in reasonable agreement with
simulation results obtained by Hui and coworkers [12]. At low car densities, the average
speed increases with the introduction of faulty lights as cars may move continuously without
stopping at traffic lights. In the dilute (p → 0) limit, the present theory givesv = 1 + c,
in agreement with numerical results. The inset shows the dependence ofpc on c. The
critical car density drops from 0.343 at c = 0 to its minimum value of about 0.280 at
c = 0.432 and then increases to 0.307 for c = 1. Such a dependence can be understood
as the general effects of inhomogenities in an otherwise homogeneous medium, although
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the role of inhomogenenity is played by the faulty lights in thec → 0 limit, and by the
traffic lights in thec → 1 limit. Near c = 0, a moving pattern at car density just below
the critical car density is disrupted by the introduction of faulty traffic lights and it is thus
harder to form a moving pattern. Nearc = 1, a moving pattern at car density just below the
critical car density is slowed down by the introduction of normal traffic lights, which act as
seeds for forming queues as cars have to stay there for one more step. Thus the addition of
inhomogeneities in either limit leads to a reduction in the average speed. Simulation data in
the literature [12] on 128× 128 lattices show some evidence of this feature. However, it is
difficult to precisely determinepc from simulations on small lattices, both due to finite size
effect and to the necessity of averaging a large number of initial configurations to obtain
good statistics.

In summary, we presented an improved mean-field theory for2D traffic-flow models
without and with faulty traffic lights. The theory gives better estimates for the critical car
densities and captures the essential features in the relation between the average velocity and
car density. The present theory can be readily generalized to problems with a combination
of the following possibilities on road condition including anisotropic distributions of cars
in the two directions, overpasses and/or slower sites on the roads, faulty traffic lights, etc.
As numerical simulation data are not available in the literature for many of these cases,
we shall defer the publication of results in these situations to future work together with
numerical results.
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